Previous Page  51 / 60 Next Page
Show Menu
Previous Page 51 / 60 Next Page
Page Background


Chip Scale Review May • June • 2018


researchers develop new wave of electronics,” Stanford

News, May 1, 2017.

6. M. Irimia-Vladu, “Green” electronics: biodegradable

a n d b i o c omp a t i b l e m a t e r i a l s a n d d e v i c e s f o r

s u s t a i n a b l e f u t u r e , ” C h e m . S o c . R e v. , 2 014 ,

43, 588-610.

7. T. Hashitani, E. Yano, Y. Ando, “Biodegradable packing

materials for LSIs,” FUJITSU Sci. Tech. J., 38, 1, p. 112-

118 (June 2002).

8. S u m i t o m o P l a s t i c s A m e r i c a ,

I n c . , p e r s o n a l c o r r e s p o n d e n c e ,

Oct. 2017.

9. Kyocera Chemical Corporation, Material Safety Data

Sheet for KE-G240KS-1 epoxy molding compound, Oct.

12, 2010.

10. E. Khosravi, O. M. Musa , “Thermally deg radable

thermosetting materials,” European Polymer Jour., 47

(2011), 465-473.

11. “Can epoxy composites be made 100% recyclable?”

Reinforced Plastics, Sept. 11, 2012.

12. G . G a r d i n e r , “ R e c y c l a b l e e p o x y p r o v e n

i n H P - R T M , ” C o m p o s i t eWo r l d , b l o g p o s t ,

Dec. 8, 2016.

13. Encyclopedia Britannica entry on Pyrolysis: https://

14. W-C. Huang, C-M. Hsu, C-F. Yang, “Recycling and

r ef u r bish i ng of epoxy pa ckag i ng mold por t s a nd

plungers,” Inventions, 2016, 1, 11.

15. A. Chen, R. H.Y. Lo,

Semiconductor Packaging: Materials

Interaction and Reliability

, Ch. 1, CRC Press, 2012.

16. N. Chai, “Abstract: The Big Fund – China’s next step to

becoming a global semiconductor leader,” DIGITIMES,

Sept. 16, 2015.

17. J. Morra, “Taking the pulse of China’s semiconductor

industry,” Electronic Design, June 29, 2017.

18. L . Chu , “ T h e r i s e of Ch i n a IC i nd u s t r y – a s a

g l ob a l e c o s y s t em p a r t n e r,” SEMI p r e s e n t a t i on ,

July 13, 2017.

19. G. Lu, “Developing the Chinese semiconductor industry

ecosystem,” Dow Electronic Materials Viewpoints blog,

May 25, 2017.

20. A. Chen, R. H.Y. Lo,

Semiconductor Packaging: Materials

Interaction and Reliability

, partial list of abbreviations,

acronyms, and symbols, CRC Press, 2012.

21. A. Chen, R. H.Y. Lo,

Semiconductor Packaging: Materials

Interaction and Reliability

, Section 3, CRC Press, 2012.

22. Adapted from R. C. Benson; D. Farrar, J. A. Miragliotta,

“Polymer adhesives and encapsulants for microelectronic

applications,” Johns Hopkins APL Tech. Digest, Vol. 28,

No. 1, pp. 58-7, 2008.


Randy H.Y. Lo received his BS degree from National Taiwan U.

and MS degree from Worcester Polytechnic Institute, and a PhD

from Purdue U., all in the field of Chemical Engineering. He is

President of Siliconware USA, Inc.

A n d r e a Ch e n r e c e i ve d a BS i n Ma t e r i a l s S c i e n c e

and Eng i nee r i ng f rom t he U. of Cal i for n ia , Be rkeley;

and an MS i n Mat e r ials Eng i nee r i ng f rom Ren sselae r

Po l y t e c h n i c I n s t i t u t e . S h e i s c u r r e n t l y A s s i s t a n t

t o t h e P r e s i d e n t a t S i l i c o nw a r e USA , I n c ; e m a i l © 2017 Brewer Science, Inc. Compatible with: 308 nm 343 nm 355 nm Creating Safe Environments Laser Release System In the laser release system, the device wafer is bonded to a transparent glass carrier using a bonding material and a release material. Once processing is completed, the pair is separated by exposing the release material with an excimer laser or solid-state laser. Low- stress separation coupled with high throughput make the laser release system suitable for all production environments. www. b r e w e r s c i e n c e . c om Laser Release System Benefits: •Highest-throughput system available with a release time of less than 30 seconds •Ultraviolet laser does not heat or penetrate the bulk bonded structure •Low-stress processing through use of CTE- matched carrier and room temperature separation Laser Release Layer Thin Device Wafer Bonding Material Transparent Carrier